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The transience, density, and point recurrence properties of one-parameter
Brownian motion have been known for some time. If the Brownian path is in
three-dimensional Fuclidean space, the path is nowhere dense with probability
one and goes to infinity as the time parameter goes to infinity. In d-dimensional
space, d = 5, the probability is one that the path has no double points [2].
(A different proof [1] shows there are no double points in 4-space.)

The original proofs of these properties depend on Lévy’s equality:

1) P{max X(t,w) — X(a,w) > N} = 2P{X(D,w) — X(a, w) > \}.

tela,bl

This equality requires independent increments, which do not exist in general
for multiparameter Brownian motion. It turns out that Lévy’s equality is not
needed. The non-recurrence property follows from Lévy’s result on the modulus
of continuity of multiparameter Brownian motion [3]. The transience and
density properties follow from an inequality given here as Theorem 2. These
proofs seem to be new, even for the one-parameter case.

Let W™® denote Lévy’s N-parameter Brownian motion with values in
d-dimensional Euclidean space; i.e.if X = W™'? then X (¢, w) = (X:(t, @), -,
X, w)) e R, where t = (¢, , --- , ty) ¢ RV and the coordinate functions X,
are mutually independent, separable, Gaussian processes with mean zero and
covariance

E(Xi(s), Xo0) = /2)ls| + [¢] — |s — ¢[l.
Here |-| is the Buclidean norm.

Theorem 1. If 4N < d, then almost no paths of W™'* have double points;
ie. P{X(s, w) = X(, w) for some distinct s, t} = 0.
Prooj. We use Lévy’s modulus of continuity [3], which shows thatif 0 < a <
1/2 and if A is a bounded set in R”, then
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(2) P{limsup |X,(s) — X,@®|-|s — |7 =0} =1, p=1,--,d.
s, ted
{s—t|-0

Let A, B be cubes in R". Assume d(4, B), the distance from A to B, is positive.
It is sufficient to show that

B = P{X(s, w) = X(t, w) forsome sed,teB} =0.

Choose o so that 4N < 2da < d. Partition A and B into 2"" cubes by dividing
the edges of each cube into 2" equal segments. Call the cubes 4; and B, , 7 =

1, ---, 2" each with a vertex s, , t; , respectively. Then
onN onN
55 % S PIKG) — Xl <227, p=1, )
d
+ P{max |X,(5) — X,(s:)| > 27" forsome ¢ =1,---,2"}
p=1 sed;
d
+ > Pi{max |X,(t) — X,(t;)| > 27 forsome j =1, ---,2"}.
p=1 teB;

Equation (2) shows that the last two sums go to zero as n goes to infinity.
The first sum 1s bounded by

gnN gnN 2.2—na ) d
> {(21r ls; — t,-|)"”2f exp [—u?/2 |s; — 4] du} .
izl =1 —_2.9—na /

This is bounded by [d(4, B)]"**-2"*¥*? which also goes to zero as n goes
to infinity.

The next theorem is necded as a substitute for equation (1) in order to prove
Theorem 3. The proof is an amplification of a classic argument of Lévy [3], [4].

Let A be a cube in R" with D the length of an edge. Dividing each edge into
2" equal segments partitions 4 into 2"V cubes. Call these cubes A, ,7 = 1, - -+,
2™ with ¢, a vertex of A; .

Theorem 2. For X = W™V there are constants (i.e. independent of n and D)

K, >0,K;,>0,and 0 < a < 1 such that
P{max |X(t,w) — X(t; , w)| > K(D27" log 27)'"* for some i} < K,a".
ted;

Proof. Since X is continuous with probability one [3], it is sufficient to
prove the theorem on the binary rational points in A. We may also assume A
is oriented with the axes and has one vertex at the origin. Let m = 2" and
consider the points in A whose coordinates are integral multiples of D/m.
These points form a network of Nm(m + 1)V equal segments parallel to the
axes, each of length D/m. Call this network =, . For the increment AX on each
of these segments,

P{]AX]| > wn™'*} £ DY\ Vexp — (\'/2D).
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Let
a, = P{|AX| > Mn~"? on some segment in =,}.
Then
a, £ Nm(m + D)V 'D'“\"" exp — (\*/2D).
Let C > 1, A, = C(2DNv log 2)"?, and let
B, = {w:|AX| > \,m~"? on some segment in some 7, , » = n}.
Then

PB) = D a, = D, N2 + 1)V D\, " exp — (\*/2D)

[2N(1—C’)]n
1 . 27\7(1-—0’)

A

K> V" r =K = K,a".

The proof is completed by showing there is a constant K; > 0 such that

for each w e B,° = the complement of B, and each ¢ = 1, --- , 2"V,
max | X(¢, w) — Xt ,w)| < K,(D27" log 27)'"*.
teA;

It suffices to suppose s, t € A are on a line parallel to one axis since any segment
can be decomposed into lines parallel to the axes. Say the p*™ component of s
iss, = D q/2", wherer Z nand 0 < ¢ < 2". Supposet = s + De, D_..1" /2",
where e, is the unit vector parallel to the p* axis and ¢, is 0 or 1. Note that
w ¢ B,” means that |[AX| < \,27"* for every increment AX in every network
m, , v = n. Then [X(5, ) — X(t, 0)| £ Dicr” €A12” 7972 Let j be the first
integer such that ¢; = 1. If welet i’ = ¢ — j + 1, then? = j and a computation
gives

P+ =+ i
Now

u—j+1

1X(s) — X(1)] £ C@DN log 2)* Y, el(r + 927"

=7

h—i+1

K(D log 2)1/2 Z [(T+j)2—(r+i)]1/2[i/21—i’]!/2
=1

IIA

IIA

KD log 277 /2"*1)/* < K,(D27" log 2")"/2.

Theorem 3. If 2N < d, the probability is one that the path of W™ * goes
to infinity as the parameler goes to infinity; i.e. for almost every w, given M > 0
there is an M (w) such that |t| > M (w) tmplies |X (¢, w)| > M.

Proof. Choose a so that 2N < ad < d. Let a, = k%, k = 1,2, .-+ . There
is a constant ¢ > 0 such that
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ekt < g — a, < kTN

Let d, = ax., — a, and n, = [a,/d,] = the integer part of a,/d, . Thenn, < k/c.
Cover RY with cubes of the form

[:l: ildk y :I:(/Ll _I‘ l)dk] X ct X [:i: iNdlc ] :l:(/LN + ]-)dk]

with one of the indices ¢ fixed at n; , while the other indices are equal to any
integer from O to n, .

For each & the cdge length of each cube is d; and the number of cubes is
b, = 2"N(n, + D' < KEV'. Call the cubes A,; ,7 = 1, --- , b, , each with
a vertex ¢, .

Now let M > 0. (Assume M is large enough that 2" exp — (M?/2N'?) < 1
and K,(27" log 2")'* < M for all n.) Let C, = [k'"%] = the integer part of
k'~ and partition 4,; into 2°*¥ cubes by dividing cach edge of A,, into 2°
equal segments. Call these A,; ,j = 1, ---, 2, cach with a vertex £, .

Let

B.i = P{X,®)] < M,p=1,---,d, forsometeA,}.

Then
B = P{X, (k)| <3M, p=1, --,d}
4 20N
+ X 2 PUX () — X)) > M)
p=1 7i=1

d
+ Y P{max |X,(t) — X, (tui})] > M forsome j =1, ---,2%"}

=1 teApij

v
3M _uZ d
= {(27r [t )" f_w exp [Q—m] du}

+ d2°YP{IX (s4:) — X (t:)| > M, s the vertex opposite £} + dK,a“

2

< [6Ma,™" )" + A2V (AN AM T exp [ﬁ%] + dK,a""
"I

_M2 kt— e B
= K:s{k"ad/z + [ZN exp (:Z“Nm) ] + a" "}.

Summing all the 8;, ,

© bk © v . —“]l/12 ko e w
Z Z Bri = Z KV 'Sk« 4 | 2V exXp <__T7§> 4+ d .
k=1 <=1 k=1 2N
Since this is a convergent series, the theorem follows from the Borel-Cantelli

lemma.

Theorem 4. If 2N < d, the range of W™ is nowhere dense in R* with
probability one.
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Proof. The range has Lebesgue measure zero with probability one. To
show this, divide the unit cube in R" into h-cubes (cubes with edge of length h).
Choose 6 so that N/d < § < 1/2. By equation (2) the image of each h-cube is
contained in a set of diameter KA, and the estimate of the d measure of the
image is A"V (Kh')* = K'h**™", which goes to zero as h goes to zero.

Theorem 3 shows that the range is closed with probability one. This fact
and the zero Lebesgue mcasure show the range is nowhere dense.

I would like to thank Professor Casper Goffman for suggesting these prob-
lems. I would also like to thank the referee for suggestions which simplified
the proofs of theorems 1 and 4.
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