Transience, Density, and Point Recurrence of Multiparameter Brownian Motion

LANE YODER

Communicated by the Editors

The transience, density, and point recurrence properties of one-parameter Brownian motion have been known for some time. If the Brownian path is in three-dimensional Euclidean space, the path is nowhere dense with probability one and goes to infinity as the time parameter goes to infinity. In d-dimensional space, $d \ge 5$, the probability is one that the path has no double points [2]. (A different proof [1] shows there are no double points in 4-space.)

The original proofs of these properties depend on Lévy's equality:

(1)
$$P\{\max_{t \in [a,b]} X(t,\omega) - X(a,\omega) > \lambda\} = 2P\{X(b,\omega) - X(a,\omega) > \lambda\}.$$

This equality requires independent increments, which do not exist in general for multiparameter Brownian motion. It turns out that Lévy's equality is not needed. The non-recurrence property follows from Lévy's result on the modulus of continuity of multiparameter Brownian motion [3]. The transience and density properties follow from an inequality given here as Theorem 2. These proofs seem to be new, even for the one-parameter case.

Let $W^{(N,d)}$ denote Lévy's N-parameter Brownian motion with values in d-dimensional Euclidean space; i.e. if $X = W^{(N,d)}$, then $X(t,\omega) = (X_1(t,\omega), \cdots, X_d(t,\omega))$ $\varepsilon \mathbf{R}^d$, where $t = (t_1, \cdots, t_N) \varepsilon \mathbf{R}^N$ and the coordinate functions X_i are mutually independent, separable, Gaussian processes with mean zero and covariance

$$E(X_i(s), X_i(t)) = (1/2)[|s| + |t| - |s - t|].$$

Here $|\cdot|$ is the Euclidean norm.

Theorem 1. If 4N < d, then almost no paths of $W^{(N,d)}$ have double points; i.e. $P\{X(s, \omega) = X(t, \omega) \text{ for some distinct } s, t\} = 0$.

Proof. We use Lévy's modulus of continuity [3], which shows that if $0 < \alpha < 1/2$ and if A is a bounded set in \mathbb{R}^N , then

608 L. YODER

(2)
$$P\{\limsup_{\substack{s,\,t \in A \\ |s-t| \to 0}} |X_p(s) - X_p(t)| \cdot |s-t|^{-\alpha} = 0\} = 1, \qquad p = 1, \cdots, d.$$

Let A, B be cubes in \mathbb{R}^N . Assume d(A, B), the distance from A to B, is positive. It is sufficient to show that

$$\beta = P\{X(s, \omega) = X(t, \omega) \text{ for some } s \in A, t \in B\} = 0.$$

Choose α so that $4N < 2d\alpha < d$. Partition A and B into 2^{nN} cubes by dividing the edges of each cube into 2^n equal segments. Call the cubes A_i and B_i , $i = 1, \dots, 2^{nN}$, each with a vertex s_i , t_i , respectively. Then

$$\beta \leq \sum_{i=1}^{2^{nN}} \sum_{i=1}^{2^{nN}} P\{|X_p(s_i) - X_p(t_i)| < 2 \cdot 2^{-n\alpha}, \quad p = 1, \dots, d\}$$

$$+ \sum_{p=1}^{d} P\{\max_{s \in A_i} |X_p(s) - X_p(s_i)| > 2^{-n\alpha} \quad \text{for some} \quad i = 1, \dots, 2^{nN}\}$$

$$+ \sum_{p=1}^{d} P\{\max_{t \in B_j} |X_p(t) - X_p(t_i)| > 2^{-n\alpha} \quad \text{for some} \quad j = 1, \dots, 2^{nN}\}.$$

Equation (2) shows that the last two sums go to zero as n goes to infinity. The first sum is bounded by

$$\sum_{i=1}^{2^{nN}} \sum_{j=1}^{2^{nN}} \left\{ (2\pi |\mathbf{s}_i - t_j|)^{-1/2} \int_{-2 \cdot 2^{-n\alpha}}^{2 \cdot 2^{-n\alpha}} \exp \left[-u^2/2 |\mathbf{s}_i - t_j| \right] du \right\}^d \cdot$$

This is bounded by $[d(A, B)]^{-d/2} \cdot 2^{n(2N-\alpha d)}$, which also goes to zero as n goes to infinity.

The next theorem is needed as a substitute for equation (1) in order to prove Theorem 3. The proof is an amplification of a classic argument of Lévy [3], [4].

Let A be a cube in \mathbb{R}^N with D the length of an edge. Dividing each edge into 2^n equal segments partitions A into 2^{nN} cubes. Call these cubes A_i , $i=1, \dots, 2^{nN}$, with t_i a vertex of A_i .

Theorem 2. For $X = W^{(N,1)}$, there are constants (i.e. independent of n and D) $K_1 > 0$, $K_2 > 0$, and 0 < a < 1 such that

$$P\{\max_{t \in A_i} |X(t, \omega) - X(t_i, \omega)| > K_1(D2^{-n} \log 2^n)^{1/2} \text{ for some } i\} < K_2 a^n.$$

Proof. Since X is continuous with probability one [3], it is sufficient to prove the theorem on the binary rational points in A. We may also assume A is oriented with the axes and has one vertex at the origin. Let $m=2^r$ and consider the points in A whose coordinates are integral multiples of D/m. These points form a network of $Nm(m+1)^{N-1}$ equal segments parallel to the axes, each of length D/m. Call this network π_r . For the increment ΔX on each of these segments,

$$P\{|\Delta X| > \lambda m^{-1/2}\} \le D^{1/2} \lambda^{-1} \exp{-(\lambda^2/2D)}.$$

Let

$$\alpha_{\nu} = P\{|\Delta X| > \lambda m^{-1/2} \text{ on some segment in } \pi_{\nu}\}.$$

Then

$$\alpha_{\nu} \leq Nm(m+1)^{N-1}D^{1/2}\lambda^{-1} \exp{-(\lambda^2/2D)}.$$

Let C > 1, $\lambda_{\nu} = C(2DN\nu \log 2)^{1/2}$, and let

$$B_n = \{\omega \colon |\Delta X| > \lambda_{\nu} m^{-1/2} \text{ on some segment in some } \pi_{\nu} , \nu \geqq n \}.$$

Then

$$P(B_n) \leq \sum_{\nu=n}^{\infty} \alpha_{\nu} \leq \sum_{\nu=n}^{\infty} N 2^{\nu} (2^{\nu} + 1)^{N-1} D^{1/2} \lambda_{\nu}^{-1} \exp \left(-(\lambda^2/2D)\right)$$

$$\leq K \sum_{\nu=n}^{\infty} \left[2^{N(1-C^2)}\right]^{\nu} = K \frac{\left[2^{N(1-C^2)}\right]^n}{1 - 2^{N(1-C^2)}} = K_2 a^n.$$

The proof is completed by showing there is a constant $K_1 > 0$ such that for each $\omega \in B_n^c$ = the complement of B_n and each $i = 1, \dots, 2^{nN}$,

$$\max_{t \in A_i} |X(t, \omega) - X(t_i, \omega)| \le K_1(D2^{-n} \log 2^n)^{1/2}.$$

It suffices to suppose $s, t \in A$ are on a line parallel to one axis since any segment can be decomposed into lines parallel to the axes. Say the p^{th} component of s is $s_{\nu} = D \, q/2^r$, where $r \geq n$ and $0 \leq q \leq 2^r$. Suppose $t = s + De_{\nu} \sum_{i=1}^{u} \epsilon_i/2^{r+i}$, where e_{ν} is the unit vector parallel to the p^{th} axis and ϵ_i is 0 or 1. Note that $\omega \in B_n^C$ means that $|\Delta X| < \lambda_{\nu} 2^{-1/2}$ for every increment ΔX in every network π_{ν} , $\nu \geq n$. Then $|X(s, \omega) - X(t, \omega)| \leq \sum_{i=1}^{u} \epsilon_i \lambda_{r+1} 2^{-(r+i)/2}$. Let j be the first integer such that $\epsilon_i = 1$. If we let i' = i - j + 1, then $i \geq j$ and a computation gives

$$r + i \le (r + j)i'$$
.

Now

$$|X(s) - X(t)| \le C(2DN \log 2)^{1/2} \sum_{i=j}^{u-j+1} \epsilon_i [(r+i)2^{-(r+i)}]^{1/2}$$

$$\le K(D \log 2)^{1/2} \sum_{i'=1}^{h-j+1} [(r+j)2^{-(r+i)}]^{1/2} [i'2^{1-i'}]^{1/2}$$

$$\le K_1(D \log 2^{r+i}/2^{r+i})^{1/2} \le K_1(D2^{-n} \log 2^n)^{1/2}.$$

Theorem 3. If 2N < d, the probability is one that the path of $W^{(N,d)}$ goes to infinity as the parameter goes to infinity; i.e. for almost every ω , given M > 0 there is an $M(\omega)$ such that $|t| > M(\omega)$ implies $|X(t, \omega)| > M$.

Proof. Choose α so that $2N < \alpha d < d$. Let $a_k = k^{\alpha}$, $k = 1, 2, \cdots$. There is a constant c > 0 such that

610 L. YODER

$$ck^{\alpha-1} < a_{k+1} - a_k < k^{\alpha-1}$$
.

Let $d_k = a_{k+1} - a_k$ and $n_k = [a_k/d_k]$ = the integer part of a_k/d_k . Then $n_k < k/c$. Cover \mathbb{R}^N with cubes of the form

$$[\pm i_1 d_k, \pm (i_1 + 1) d_k] \times \cdots \times [\pm i_N d_k, \pm (i_N + 1) d_k]$$

with one of the indices i fixed at n_k , while the other indices are equal to any integer from 0 to n_k .

For each k the edge length of each cube is d_k and the number of cubes is $b_k = 2^N N(n_k + 1)^{N-1} < Kk^{N-1}$. Call the cubes A_{ki} , $i = 1, \dots, b_k$, each with a vertex t_{ki} .

Now let M>0. (Assume M is large enough that $2^N \exp{-(M^2/2N^{1/2})}<1$ and $K_1(2^{-n}\log{2^n})^{1/2}< M$ for all n.) Let $C_k=[k^{1-\alpha}]=$ the integer part of $k^{1-\alpha}$ and partition A_{ki} into 2^{C_kN} cubes by dividing each edge of A_{ki} into 2^{C_k} equal segments. Call these A_{kij} , $j=1,\cdots,2^{C_k}$, each with a vertex t_{kij} .

Let.

$$\beta_{ki} = P\{|X_p(t)| < M, p = 1, \dots, d, \text{ for some } t \in A_{ki}\}.$$

Then

$$\begin{split} \beta_{ki} & \leq P\{|X_{p}(t_{ki})| < 3M, \quad p = 1, \cdots, d\} \\ & + \sum_{p=1}^{d} \sum_{i=1}^{2^{C}_{k}^{N}} P\{|X_{p}(t_{kij}) - X_{p}(t_{ki})| > M\} \\ & + \sum_{p=1}^{d} P\{\max_{t \in A_{kij}} |X_{p}(t) - X_{p}(t_{kij})| > M \quad \text{for some} \quad j = 1, \cdots, 2^{C_{k}^{N}}\} \\ & \leq \left\{ (2\pi |t_{ki}|)^{-1/2} \int_{-3M}^{3M} \exp\left[\frac{-u^{2}}{2|t_{ki}|}\right] du \right\}^{d} \\ & + d2^{C_{k}^{N}} P\{|X_{1}(s_{ki}) - X_{1}(t_{ki})| > M, \quad s_{ki} \text{ the vertex opposite } t_{ki}\} + dK_{2} a^{C_{k}^{N}} \\ & \leq [6Ma_{k}^{-1/2}]^{d} + d2^{C_{k}^{N}} (d_{k}N^{1/2})^{1/2} M^{-1} \exp\left[\frac{-M^{2}}{2d_{k}N^{1/2}}\right] + dK_{2} a^{C_{k}^{N}} \\ & \leq K_{3} \left\{ k^{-\alpha d/2} + \left[2^{N} \exp\left(\frac{-M^{2}}{2N^{1/2}}\right)\right]^{k^{1-\alpha}} + a^{k^{1-\alpha}} \right\}. \end{split}$$

Summing all the β_{ki} ,

$$\sum_{k=1}^{\infty} \sum_{i=1}^{b_k} \beta_{ki} \leq \sum_{k=1}^{\infty} K_4 k^{N-1} \left\{ k^{-\alpha d/2} + \left[2^N \exp\left(\frac{-M^2}{2N^{1/2}}\right) \right]^{k^{1-\alpha}} + a^{k^{1-\alpha}} \right\} \cdot$$

Since this is a convergent series, the theorem follows from the Borel-Cantelli lemma.

Theorem 4. If 2N < d, the range of $W^{(N,d)}$ is nowhere dense in \mathbb{R}^d with probability one.

Proof. The range has Lebesgue measure zero with probability one. To show this, divide the unit cube in \mathbb{R}^N into h-cubes (cubes with edge of length h). Choose δ so that $N/d < \delta < 1/2$. By equation (2) the image of each h-cube is contained in a set of diameter Kh^{δ} , and the estimate of the d measure of the image is $h^{-N}(Kh^{\delta})^d = K^dh^{\delta d-N}$, which goes to zero as h goes to zero.

Theorem 3 shows that the range is closed with probability one. This fact and the zero Lebesgue measure show the range is nowhere dense.

I would like to thank Professor Casper Goffman for suggesting these problems. I would also like to thank the referee for suggestions which simplified the proofs of theorems 1 and 4.

References

- A. DVORETZKY, P. ERDÖS & S. KAKUTANI, Double points of paths of Brownian motion in n-space, Acta Szeged 12 (1950), 75-81.
- S. KAKUTANI, On Brownian motions in n-space, Japan Acad. Tokyo Proc. 20 (1944), 648–652
- 3. P. Lévy, Processus stochastiques et mouvement Brownien. Paris, 1948, p. 265.
- 4. P. Lévy, Théorie de l'addition des variables aléatoires. Paris, 1954, pp. 169-172.

University of Hawaii

Date communicated: July 30, 1973