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VARIATION OF MULTIPARAMETER BROWNIAN MOTION

LANE YODER

ABSTRACT.    Levy's ¿V-parameter Brownian motion in   d-dimensional

space is denoted by   W    '    .  Using uniform partitions and a Vitali-type

variation, Berman recently extended to  C    '      a classical result of Levy

concerning the relation between   W    '      and 2-variation.  With this vari-

ation   W    '      has variation dimension  2N with probability one.   An ap-

propriate definition of weak variation is given using powers of the diam-

eters of the images of sets which satisfy a parameter of regularity.   A

previous result concerning the Hausdorff dimensions of the graph and

image is used to show the weak variation dimension of   W    '      is  2jV

with probability one, extending the result for   W    •      of Goffman and Lough-

lin.  If unrestricted partitions of the domain are used, the weak variation

dimension of a function turns out to be the same as the Hausdorff dimen-

sion of the image.

In a recent paper by Goffman and Loughlin [3] strong and weak varia-

tions were defined, and the strong and weak variation dimensions of Brown-

ian motion were shown to be  2 with probability one.  The definitions and

proofs given in that paper do not immediately generalize to multiparameter

Brownian motion.

The purpose of this paper is to find appropriate definitions of strong

and weak variations and, using a previous result on the Hausdorff dimensions

of Brownian motion (see the appendix for a summary of the proof), to show

for /V-parameter Brownian motion in ^-dimensional space, both the strong

and weak variation dimensions are  2/V  with probability one.

The distinction between the strong and weak variations becomes more

pronounced in higher dimensions.  In N parameters the strong variation is

defined in terms of the vertices of rectangles and the weak variation in terms

of the oscillation on the rectangle, whereas in the one variable case both

the strong and weak variations may be defined in terms of the oscillation on

an interval.
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Let  VP   ■   '  denote Levy's  /V-parameter Brownian motion with values

in ¿-dimensional Euclidean space; i.e., if X = IP   ■   ', then X{t, cj) =

(XjO, co), ■ ■ • , Xd{t, <y)) £ Rd, where  î *> (íj,..., tN) £ RN   and the coordi-

nate functions  X.  are mutually independent, separable Gaussian processes

with mean zero and covariance

E{Xis), X.{t)) = A[\s\ + \t\-\s-t\].

Here   |   '  |   is the Euclidean norm.

1. Let a = {a., • • •, a„) and b = {b,, ■ • • , bN) be vertices of a rectan-

gle in R   , and let  Y  denote the /Vth-order difference of the sample func-

tion X = IP   '   ' over this rectangle:

/V

Y = A , • • • ANX = X{a) - £ p, + £ p„ - — + <- DNXib)

r=l r<s

where pfs ^ denotes X(cj,. .. , cN) with c ,••., c( equal to b^, ■ ■ • , ¿>(,

respectively, and the remaining c.  equal to a..   In other words   Y  is the sum

of the function X taken at the vertices of the rectangle, where X has op-

posite signs for every pair of vertices sharing a common edge.

Let 77 = \A .\ be a partition of the unit /V-cube, U   , into rectangles

A..  We define the strong p-variation of X to be

VAX) = sup £  Y."
P 7T •

" 7

where  Y. = Aj . ..   A^X defined for the rectangle A ., \   • |   is the Euclidean

norm in R   , and the sup is taken over all partitions of  U     into rectangles.

Then either Vs{X) = °°  for all fi > 1, VS{X) < <*, for all p > 1, or there
p *  — P

is a unique p > 1   such that  V5(X) < oo  for all q > p  and  VS(X) = oo for all

q < p.   This gives the strong variation dimension of X,  dim  (X), which is

oo, I, and p, respectively, in the three cases.

Theorem 1.  For X = Ww-d\ dims(X) = 2/V with probability one.

Proof.  This follows immediately from two known properties of IP

(a) For almost every tu, X(cd) is in the Lipschitz 8 class for every

8 < A [5].  Let p > 2/V  and 8 = N/p.  Let   n. = \Ak\ be any sequence of

partitions of  U     into rectangles and let I.   be the length of the shortest

edge of A*.  Then the /Vth order difference  Yk defined for Ak  satisfies

\Yk\ <2NllK{lk)S and
1   7 ' — 7

Vsp{X) < lim sup XI Y^|p <(2N-1K)P lim sup £(/*)N.
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The sum  2(/fe)     is bounded since the Hausdorff   N-measure of  U     is
i   i

finite.  Thus  dim  (X) < 2/V with probability one.

(b)   Let 77, = {A* j be the partition of U" into cubes of edge length

2     .  Berman generalized a classical result of Levy by showing that there

is a constant B     > 0  such that for X = IP   *

i- E|y?l2N = BN
k —oo     ¡

with probability one [l].  Thus for X = W(N'd), dims(X) > 2/V  with probabil-

ity one.

2. The strong p-variation is not given by every sequence of partitions

with norms converging to  0.  Goffman and Loughlin noted in [3] that for

every continuous /: [a, b] -> R  and p > 1  there is a sequence of partitions

a = Íq < t j < . - .  < t      = b, with norms converging to 0, for which

lim   Zl/^)-Ali>l' = °-
k-*o*   ¿-I

A similar property holds for the general case IP' -d'.  Let p > 2  and choose

8 so that  1/p < S < 1/2.  Choose  ?  such that ? > 1  and q > {N - l)/{p8 - l).

Divide  U     into Â-cubes (cubes with edges of length h).  On each h-cube

divide one edge into intervals of length hq. Hyperplanes through these

points divide the A-cube into rectangles.  There are h   ~q  of the rectangles

in each Â-cube.  By the Lipschitz condition the /Vth order difference  Y de-

fined on each of these "thin" rectangles satisfies   |Y| < 2   ~   Khq  .  Sum-

ming over all the rectangles,

Z\Y\P<i2N~1K)phqSp-N-q+\

which converges to  0  as  h goes to 0.

3. This fact motivates us to define another kind of variation, which we

call weak variation.  Our first definition of weak variation is as follows.

Let 77 = [A .} be a countable covering of U   , the unit /V-cube. We define

the weak p-variation of a function X  to be

V°(X)= lim    inf     £(S(XA))P
p e-0|M<i r"        Ai

where S(X .  )  is the diameter of the image of A ., and
i l

\n\ =sup [diameter of A .: A . e 77!.

This variation yields a weak variation dimension of  X,  dim0(X), in the same

way as described for the strong variation.

Theorem 2.  For any continuous function X: U    -* R  , dim0(X) =
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dim„(X„/^), the Hausdorff dimension of the image of U   .

Proof.   Let  n, = \A . \ be a sequence of coverings of  V     such that

üm^JkJI = ° »"d

lim   ^{bXX   k))p = V°AX).

But the Hausdorff ¿»-measure of X^/y  is not greater than lim,^oo2,.{8{XAk))p,

so dim0(X) > dimH(Xy/y).

To show  dimQ(X) < dim^íX^^)  it suffices to show that for each p,

HA^ijn) = 0  implies  ^  (X) = 0.  (if    is the Hausdorff p-measure.) Let

e > 0. If H AX¡jn) = 0, there is a covering \A .j of X^  such that

1.{8{A.))P <eN + 1.  Divide  UN  into e-cubes.  Label the cubes  B     j =

l,...,e-N.  Let C..= X~\A.)nB..   Then
77 7 ;

e-N

V°(X) < lim   y{8{Xr   ))p < lim    y   y{8{A.))p   < lim e"V + 1 = 0.
p       "e-0   .. Sj      "e-o  .   . l       ~e-0

77 7=1     7

4.  The last part of the above proof required disconnected sets in the

coverings.   This motivates a second definition of weak variation, in which

the sequences of coverings are required to satisfy a parameter of regularity.

(A sequence  i77, ! of coverings satisfies a parameter of regularity K > 0 if

each set A   in each it.   satisfies supßQ^5(B)/S(A) > K, where B  is a ball.)

For a sequence  n, = [A . j  of coverings of U     with lim. _>001)77", || = 0, let

V{p, X, {ffA0 = liminf £(S(X   k))p
k^oo      i A.

and define the weak p-variation of X to be

V"¡{X) =inf[Vtp, X, {7Tfe}): \nk\ satisfies some parameter of regularity!.

(Different sequences of partitions may have different parameters of regular-

ity.) As before, the weak p-variation yields a weak variation dimension of

X   dim   (X).
' w

Theorem 3.  // X = W(N-d), then dim   (X) = 2/V with probability one.

Proof.   The inequality  dim   (X) < 2/V  follows from the Lipschitz con-

dition. Let p > 2N and 8 = N/p.   For any sequence of partitions 77 ̂ = [A¿ ¡

of U     satisfying a parameter of regularity and li»Di^o«fffil = 0»

\T{X) < lim inf T(8LX   A)p < lim inf Y{K8{Ak))N.
P i ^^ A ~     , l
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This sum is bounded since  J77, j  satisfies a parameter of regularity and  U

has finite Hausdorff  /V-measure.

To show dim   (X) > 2N we use the facts that for X = W(N-d),
w — '

(a) dimH(gr X) = min {2/V, N + d/2\, and

(b) dim^iXyjy) = min [2/V, d\ with probability one.  (See appendix.)

Here dim^igr X) denotes the Hausdorff dimension of the graph of X.  As in

Part 3 we have Hp {XuN) < V™(X), so if 2/V < d, (b) implies dim^X) >

dim^iXy^) = 2/V  with probability one.

If  2/V > d, the inequality dim   (X) > 2/V  follows from (a) and the fol-

lowing

Lemma.  // 2/V > d, then for each p > N/d and almost every a>, there

is a constant  C = C{p, a>) such that

Here H  (gr X) denotes the Hausdorff q-measure of the graph of X.

,N

Proof.  Let p > N/d and let. it, = [A   \ be a sequence of partitions of

U     satisfying some parameter of regularity such that  lim.   „Jiff, || = 0  and

lim   £(S(X   k))dp <Vwdp{X) + l.
k — 00    ■ A .

Let 5* = 8{XAk) and rk = the integer part of 8k/8{Ak). Now the image

of A*  can be covered by {r   + 1)    cubes whose edges have length 5(A).

Likewise the graph of A.   can be covered by the same number of cubes of

the same size. The estimate of the Hausdorff d + N - N/p measure of the graph

of Ak is

Hk={rk+ l)d{8{Ak))d*N-N/p.

Since {rk+ l)d <{28k/8{Ak))d + 1,

Hk <{28k)d{8{Ak))N-N/p + {8{Ak))d+N-N/p.

Now the  &th estimate of the d + N — N/p measure of the graph of X

is

X Hk < 2d X(^)d(5(4))N_N/i' + hk\\d'N/p Z^4))N-
7 7 i

By Holder's inequality,

'£{8k)d{d{Ak))N-N/p < \Y,i8pdpl]
, ii-i/p

£(8UJ))W
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The sum  Z (<5(A . ))     is bounded (say by M) for all k  since the sequence

J77, j  satisfies a parameter of regularity and the Hausdorff /V-measure of

UN  is finite. So

Hä + N-N/p^rX)<litaSup^Hk

fe—oo

i-i/* rz< lira sup 2dM1~l/p \T {Sk)dp
Up

+ M im \\»Jd~N/p

<2dM1-l/p[vu;Ax) + l]1/p.
— dp

I would like to thank Professor Casper Goffman for suggesting this

problem.

Appendix.  The following theorem generalizes results of S. J. Taylor [6], [7], P.

Levy [A], and A. S. Besicovitch and H. D. Ursell [2], and the proof is

summarized here in three parts.

Theorem.   The Hausdorff dimensions of the graph and image of W     •   '

are almost surely  min [2/V, N + d/2\ and min [2/V, d\, respectively.

I. Let X: U    -> Rd belong to the Lipschitz S-class (Lip 5). Then

dim^X^) < dimH(gr X) < min \N/8, N + (1 - 8)d\. (Since W{N-d)  is al-

most surely in  Lip 8 fot every 8 < A [5], we obtain part of the theorem.)

For the proof of I, divide  U     into Ä-cubes (cubes with edge of length

h). The graph of each h-cube is contained in a set of diameter K^h .   The

estimate of the N/<5 measure of the graph is h~   {K^h )       = K2 < oo.  On

the other hand, dividing the image of each h-cube into />-cubes provides a covering

of the graph with A-cubes, and the estimate of the N + (1 - 8)d measure of the

graph is

h-N[KlhB-1]d[{N + d)lAb]N + (1-S)d=K2<oo.

II. Let X = W(N-d),  2/V < d.   Then dimH(gr X) > dimH(X[;N) > 2/V. Let

a < 2/V.  It is sufficient to show that the a capacity of the image of U   ,

Cj,Xyff)t is positive.  For this it is sufficient to show

J„N   J„N

dsdt

'UN \X{s, oj) - X{t, W)|a

Now
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.2   , ,.2>
dco        ,„ ,,wrf/2 r   , ,-a ¡ui + '-- + ud

75?«

|XU,.ö>)|a 'R- \        2M

K,|i-

r°°   d-l-a        (-r\

where r = |i|      jc.   The integral is finite since  a < i/, so

f      f     dsdtf_él-=   f      f     K-    ̂
J..N   J..N JßlYfc    «..\_tff    ,.,11« JnN   J,IUN JUN Ja\X{s, oS)-X{t, co)\a       JUN JUN      \s-t\a/2

which is finite since  a/2 < N.   Fubini's theorem gives the desired conclu-

sion. A similar argument shows dimH(Xy/u) > d whenever 2/V > d.

III. If 2/V > d, then dimH(gr X) > N + d/2. Let a be any number sat-

isfying d < a < N + d/2, and choose c > 0 so that a + e < d + N/d.   We

show   Ca(gr X) > 0.   Let At, co) = [|X(i, co)\2 + \t\2]V2   and  f{t,  R) =

P\cú: tit, co) <R\. If R > \t\ > 0,

If |r| > R > 0, /(/, R) = 0. We have

f da> (°° R-v-ÏLdR
Ja \j. ,.vli«    Jo ¿R

= K2|i|"rf/2 r|R1-a(R2-|í|¥/2-Uxp(-Íl^p-l¿R.
R'-UI2

The substitution R    = \t\x    + \t\     gives

f\d/2-a-c

Now

Ç       C      j   j   Ç dco _ Ç       Ç     _Kdsdt

V V    S     Jo \{s, X{s, cu)) - {t, Mi, <u))| * " V V |s- /|a+e-d/;

This integral is finite since  a + e — ci/2 < /V, and Fubini's theorem again

concludes the proof.
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